

VFARM Vertical Farming Sostenibile

LINEE GUIDA

Acronimo:	VFARM
Titolo completo:	Vertical Farming sostenibile
Codice progetto:	2020ELWM82
Finanziamento	PRIN
Coordinatore:	Università di Bologna
Inizio del progetto:	8 Maggio, 2022
Durata del progetto:	36 mesi

	Caratteristiche documento
Titolo del documento	LINEE GUIDA
Work Package:	WP6
Partner responsabile:	Università di Bologna, Università di Torino, Università di Napoli, Università di Padova
Autori principali:	University of Bologna and University of Turin
Altri autori:	Ilaria Zauli, Giuseppina Pennisi, Francesco Orsini
Numero di pagine:	4

Linee guida (LGs)

1. LG n°6

Valutazione del ruolo della qualità della luce nel cavolo baby-leaf coltivato in vertical farm: produttività ed efficienza nell'uso delle risorse.

In uno scenario di crescente richiesta di alimenti nutrienti, convenienti e pronti da mangiare, i prodotti di IV gamma risultano particolarmente attraenti nel mercato alimentare. In VF, grazie al loro ciclo di crescita breve e la ridotta dimensione, rappresentano una specie ideale permettendo maggiori rese e cicli annuali. Tuttavia, maggiori ricerche sulla gestione luminosa specie-specifica sono necessarie. Questo studio mirava a identificare strategie di gestione dell'illuminazione LED per la coltivazione di cavolo (*Brassica oleracea*) baby-leaf coltivato in sistema ebb-and-flow sotto diversi spettri con diversi rapporti rosso:blu con o senza la presenza di bianco (W-RB₃ e RB₃, W-RB₁ e RB₁).

Spettro	Risultati
W-RB₃ RB₃	Maggiore: Resa Area fogliare (LA) Efficienza d'uso della superficie occupata (SUE) Efficienza d'uso della superficie coltivata (L-SUE) Efficienza d'uso dell'acqua (WUE) Efficienza d'uso dell'energia luminosa (L-EUE)
W- RB₁	Maggiore:
RB₁	Contenuto di sostanza secca (%)

Gli spettri con un rapporto RB più elevato hanno evidenziato un aumento di resa ed efficienza d'uso delle risorse per il cavolo baby-leaf, mostrando la convenienza della sua produzione in VF. Considerando che le risposte delle piante ai trattamenti luminosi sono spesso specie-specifiche e dipendono anche dal tipo di sistema applicato, si raccomandano altri studi e applicazioni di questi, testando ulteriori combinazioni luminose (ad esempio aumentando il rapporto rosso:blu) e diverse specie adatte a questi tipi di sistemi indoor, al fine di aumentare la sostenibilità e produttività del VF.

Link alla pubblicazione